Papers
Topics
Authors
Recent
2000 character limit reached

Learning to Generate Novel Scene Compositions from Single Images and Videos (2105.05847v1)

Published 12 May 2021 in cs.CV and cs.LG

Abstract: Training GANs in low-data regimes remains a challenge, as overfitting often leads to memorization or training divergence. In this work, we introduce One-Shot GAN that can learn to generate samples from a training set as little as one image or one video. We propose a two-branch discriminator, with content and layout branches designed to judge the internal content separately from the scene layout realism. This allows synthesis of visually plausible, novel compositions of a scene, with varying content and layout, while preserving the context of the original sample. Compared to previous single-image GAN models, One-Shot GAN achieves higher diversity and quality of synthesis. It is also not restricted to the single image setting, successfully learning in the introduced setting of a single video.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.