Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Directional GAN: A Novel Conditioning Strategy for Generative Networks (2105.05712v2)

Published 12 May 2021 in cs.CV and cs.NE

Abstract: Image content is a predominant factor in marketing campaigns, websites and banners. Today, marketers and designers spend considerable time and money in generating such professional quality content. We take a step towards simplifying this process using Generative Adversarial Networks (GANs). We propose a simple and novel conditioning strategy which allows generation of images conditioned on given semantic attributes using a generator trained for an unconditional image generation task. Our approach is based on modifying latent vectors, using directional vectors of relevant semantic attributes in latent space. Our method is designed to work with both discrete (binary and multi-class) and continuous image attributes. We show the applicability of our proposed approach, named Directional GAN, on multiple public datasets, with an average accuracy of 86.4% across different attributes.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.