Papers
Topics
Authors
Recent
2000 character limit reached

PoseContrast: Class-Agnostic Object Viewpoint Estimation in the Wild with Pose-Aware Contrastive Learning (2105.05643v2)

Published 12 May 2021 in cs.CV

Abstract: Motivated by the need for estimating the 3D pose of arbitrary objects, we consider the challenging problem of class-agnostic object viewpoint estimation from images only, without CAD model knowledge. The idea is to leverage features learned on seen classes to estimate the pose for classes that are unseen, yet that share similar geometries and canonical frames with seen classes. We train a direct pose estimator in a class-agnostic way by sharing weights across all object classes, and we introduce a contrastive learning method that has three main ingredients: (i) the use of pre-trained, self-supervised, contrast-based features; (ii) pose-aware data augmentations; (iii) a pose-aware contrastive loss. We experimented on Pascal3D+, ObjectNet3D and Pix3D in a cross-dataset fashion, with both seen and unseen classes. We report state-of-the-art results, including against methods that additionally use CAD models as input.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.