Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

LipBaB: Computing exact Lipschitz constant of ReLU networks (2105.05495v2)

Published 12 May 2021 in cs.LG and cs.DS

Abstract: The Lipschitz constant of neural networks plays an important role in several contexts of deep learning ranging from robustness certification and regularization to stability analysis of systems with neural network controllers. Obtaining tight bounds of the Lipschitz constant is therefore important. We introduce LipBaB, a branch and bound framework to compute certified bounds of the local Lipschitz constant of deep neural networks with ReLU activation functions up to any desired precision. We achieve this by bounding the norm of the Jacobians, corresponding to different activation patterns of the network caused within the input domain. Our algorithm can provide provably exact computation of the Lipschitz constant for any p-norm.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.