Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Homogeneous vector bundles and $G$-equivariant convolutional neural networks (2105.05400v1)

Published 12 May 2021 in cs.LG, math.RT, and stat.ML

Abstract: $G$-equivariant convolutional neural networks (GCNNs) is a geometric deep learning model for data defined on a homogeneous $G$-space $\mathcal{M}$. GCNNs are designed to respect the global symmetry in $\mathcal{M}$, thereby facilitating learning. In this paper, we analyze GCNNs on homogeneous spaces $\mathcal{M} = G/K$ in the case of unimodular Lie groups $G$ and compact subgroups $K \leq G$. We demonstrate that homogeneous vector bundles is the natural setting for GCNNs. We also use reproducing kernel Hilbert spaces to obtain a precise criterion for expressing $G$-equivariant layers as convolutional layers. This criterion is then rephrased as a bandwidth criterion, leading to even stronger results for some groups.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.