Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Benchmarking down-scaled (not so large) pre-trained language models (2105.04876v1)

Published 11 May 2021 in cs.CL, cs.LG, and stat.ML

Abstract: Large Transformer-based LLMs are pre-trained on corpora of varying sizes, for a different number of steps and with different batch sizes. At the same time, more fundamental components, such as the pre-training objective or architectural hyperparameters, are modified. In total, it is therefore difficult to ascribe changes in performance to specific factors. Since searching the hyperparameter space over the full systems is too costly, we pre-train down-scaled versions of several popular Transformer-based architectures on a common pre-training corpus and benchmark them on a subset of the GLUE tasks (Wang et al., 2018). Specifically, we systematically compare three pre-training objectives for different shape parameters and model sizes, while also varying the number of pre-training steps and the batch size. In our experiments MLM + NSP (BERT-style) consistently outperforms MLM (RoBERTa-style) as well as the standard LM objective. Furthermore, we find that additional compute should be mainly allocated to an increased model size, while training for more steps is inefficient. Based on these observations, as a final step we attempt to scale up several systems using compound scaling (Tan and Le, 2019) adapted to Transformer-based LLMs.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.