Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Exact Recovery in the General Hypergraph Stochastic Block Model (2105.04770v2)

Published 11 May 2021 in cs.IT, cs.LG, eess.SP, math.IT, math.ST, stat.ML, and stat.TH

Abstract: This paper investigates fundamental limits of exact recovery in the general d-uniform hypergraph stochastic block model (d-HSBM), wherein n nodes are partitioned into k disjoint communities with relative sizes (p1,..., pk). Each subset of nodes with cardinality d is generated independently as an order-d hyperedge with a certain probability that depends on the ground-truth communities that the d nodes belong to. The goal is to exactly recover the k hidden communities based on the observed hypergraph. We show that there exists a sharp threshold such that exact recovery is achievable above the threshold and impossible below the threshold (apart from a small regime of parameters that will be specified precisely). This threshold is represented in terms of a quantity which we term as the generalized Chernoff-Hellinger divergence between communities. Our result for this general model recovers prior results for the standard SBM and d-HSBM with two symmetric communities as special cases. En route to proving our achievability results, we develop a polynomial-time two-stage algorithm that meets the threshold. The first stage adopts a certain hypergraph spectral clustering method to obtain a coarse estimate of communities, and the second stage refines each node individually via local refinement steps to ensure exact recovery.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.