Papers
Topics
Authors
Recent
2000 character limit reached

Unpacking the Expressed Consequences of AI Research in Broader Impact Statements (2105.04760v2)

Published 11 May 2021 in cs.CY

Abstract: The computer science research community and the broader public have become increasingly aware of negative consequences of algorithmic systems. In response, the top-tier Neural Information Processing Systems (NeurIPS) conference for machine learning and artificial intelligence research required that authors include a statement of broader impact to reflect on potential positive and negative consequences of their work. We present the results of a qualitative thematic analysis of a sample of statements written for the 2020 conference. The themes we identify broadly fall into categories related to how consequences are expressed (e.g., valence, specificity, uncertainty), areas of impacts expressed (e.g., bias, the environment, labor, privacy), and researchers' recommendations for mitigating negative consequences in the future. In light of our results, we offer perspectives on how the broader impact statement can be implemented in future iterations to better align with potential goals.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 11 likes about this paper.