Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

G-Tran: Making Distributed Graph Transactions Fast (2105.04449v2)

Published 10 May 2021 in cs.DB and cs.DC

Abstract: Graph transaction processing raises many unique challenges such as random data access due to the irregularity of graph structures, low throughput and high abort rate due to the relatively large read/write sets in graph transactions. To address these challenges, we present G-Tran -- an RDMA-enabled distributed in-memory graph database with serializable and snapshot isolation support. First, we propose a graph-native data store to achieve good data locality and fast data access for transactional updates and queries. Second, G-Tran adopts a fully decentralized architecture that leverages RDMA to process distributed transactions with the MPP model, which can achieve high performance by utilizing all computing resources. In addition, we propose a new MV-OCC implementation with two optimizations to address the issue of large read/write sets in graph transactions. Extensive experiments show that G-Tran achieves competitive performance compared with other popular graph databases on benchmark workloads.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube