Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Critical Review of Information Bottleneck Theory and its Applications to Deep Learning (2105.04405v2)

Published 7 May 2021 in cs.LG and cs.AI

Abstract: In the past decade, deep neural networks have seen unparalleled improvements that continue to impact every aspect of today's society. With the development of high performance GPUs and the availability of vast amounts of data, learning capabilities of ML systems have skyrocketed, going from classifying digits in a picture to beating world-champions in games with super-human performance. However, even as ML models continue to achieve new frontiers, their practical success has been hindered by the lack of a deep theoretical understanding of their inner workings. Fortunately, a known information-theoretic method called the information bottleneck theory has emerged as a promising approach to better understand the learning dynamics of neural networks. In principle, IB theory models learning as a trade-off between the compression of the data and the retainment of information. The goal of this survey is to provide a comprehensive review of IB theory covering it's information theoretic roots and the recently proposed applications to understand deep learning models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)