Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Loss-Aversively Fair Classification (2105.04273v1)

Published 10 May 2021 in cs.LG and cs.CY

Abstract: The use of algorithmic (learning-based) decision making in scenarios that affect human lives has motivated a number of recent studies to investigate such decision making systems for potential unfairness, such as discrimination against subjects based on their sensitive features like gender or race. However, when judging the fairness of a newly designed decision making system, these studies have overlooked an important influence on people's perceptions of fairness, which is how the new algorithm changes the status quo, i.e., decisions of the existing decision making system. Motivated by extensive literature in behavioral economics and behavioral psychology (prospect theory), we propose a notion of fair updates that we refer to as loss-averse updates. Loss-averse updates constrain the updates to yield improved (more beneficial) outcomes to subjects compared to the status quo. We propose tractable proxy measures that would allow this notion to be incorporated in the training of a variety of linear and non-linear classifiers. We show how our proxy measures can be combined with existing measures for training nondiscriminatory classifiers. Our evaluation using synthetic and real-world datasets demonstrates that the proposed proxy measures are effective for their desired tasks.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.