Emergent Mind

Learning stochastic decision trees

(2105.03594)
Published May 8, 2021 in cs.LG , cs.DS , and stat.ML

Abstract

We give a quasipolynomial-time algorithm for learning stochastic decision trees that is optimally resilient to adversarial noise. Given an $\eta$-corrupted set of uniform random samples labeled by a size-$s$ stochastic decision tree, our algorithm runs in time $n{O(\log(s/\varepsilon)/\varepsilon2)}$ and returns a hypothesis with error within an additive $2\eta + \varepsilon$ of the Bayes optimal. An additive $2\eta$ is the information-theoretic minimum. Previously no non-trivial algorithm with a guarantee of $O(\eta) + \varepsilon$ was known, even for weaker noise models. Our algorithm is furthermore proper, returning a hypothesis that is itself a decision tree; previously no such algorithm was known even in the noiseless setting.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.