Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Robust output feedback model predictive control using online estimation bounds (2105.03427v1)

Published 7 May 2021 in eess.SY, cs.SY, and math.OC

Abstract: We present a framework to design nonlinear robust output feedback model predictive control (MPC) schemes that ensure constraint satisfaction under noisy output measurements and disturbances. We provide novel estimation methods to bound the magnitude of the estimation error based on: stability properties of the observer; detectability; set-membership estimation; moving horizon estimation (MHE). Robust constraint satisfaction is guaranteed by suitably incorporating these online validated bounds on the estimation error in a homothetic tube based MPC formulation. In addition, we show how the performance can be further improved by combining MHE and MPC in a single optimization problem. The framework is applicable to a general class of detectable and (incrementally) stabilizable nonlinear systems. While standard output feedback MPC schemes use offline computed worst-case bounds on the estimation error, the proposed framework utilizes online validated bounds, thus reducing conservatism and improving performance. We demonstrate the reduced conservatism of the proposed framework using a nonlinear 10-state quadrotor example.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube