Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Kernel Two-Sample Tests for Manifold Data (2105.03425v4)

Published 7 May 2021 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: We present a study of a kernel-based two-sample test statistic related to the Maximum Mean Discrepancy (MMD) in the manifold data setting, assuming that high-dimensional observations are close to a low-dimensional manifold. We characterize the test level and power in relation to the kernel bandwidth, the number of samples, and the intrinsic dimensionality of the manifold. Specifically, when data densities $p$ and $q$ are supported on a $d$-dimensional sub-manifold ${M}$ embedded in an $m$-dimensional space and are H\"older with order $\beta$ (up to 2) on ${M}$, we prove a guarantee of the test power for finite sample size $n$ that exceeds a threshold depending on $d$, $\beta$, and $\Delta_2$ the squared $L2$-divergence between $p$ and $q$ on the manifold, and with a properly chosen kernel bandwidth $\gamma$. For small density departures, we show that with large $n$ they can be detected by the kernel test when $\Delta_2$ is greater than $n{- { 2 \beta/( d + 4 \beta ) }}$ up to a certain constant and $\gamma$ scales as $n{-1/(d+4\beta)}$. The analysis extends to cases where the manifold has a boundary and the data samples contain high-dimensional additive noise. Our results indicate that the kernel two-sample test has no curse-of-dimensionality when the data lie on or near a low-dimensional manifold. We validate our theory and the properties of the kernel test for manifold data through a series of numerical experiments.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)