Papers
Topics
Authors
Recent
2000 character limit reached

Diff-Explainer: Differentiable Convex Optimization for Explainable Multi-hop Inference (2105.03417v2)

Published 7 May 2021 in cs.CL and cs.AI

Abstract: This paper presents Diff-Explainer, the first hybrid framework for explainable multi-hop inference that integrates explicit constraints with neural architectures through differentiable convex optimization. Specifically, Diff-Explainer allows for the fine-tuning of neural representations within a constrained optimization framework to answer and explain multi-hop questions in natural language. To demonstrate the efficacy of the hybrid framework, we combine existing ILP-based solvers for multi-hop Question Answering (QA) with Transformer-based representations. An extensive empirical evaluation on scientific and commonsense QA tasks demonstrates that the integration of explicit constraints in an end-to-end differentiable framework can significantly improve the performance of non-differentiable ILP solvers (8.91% - 13.3%). Moreover, additional analysis reveals that Diff-Explainer is able to achieve strong performance when compared to standalone Transformers and previous multi-hop approaches while still providing structured explanations in support of its predictions.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.