Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Identifying source term in the subdiffusion equation with L^2-TV regularization (2105.03381v1)

Published 7 May 2021 in math.NA and cs.NA

Abstract: In this paper, we consider the inverse source problem for the time-fractional diffusion equation, which has been known to be an ill-posed problem. To deal with the ill-posedness of the problem, we propose to transform the problem into a regularized problem with L2 and total variational (TV) regularization terms. Differing from the classical Tikhonov regularization with L2 penalty terms, the TV regularization is beneficial for reconstructing discontinuous or piecewise constant solutions. The regularized problem is then approximated by a fully discrete scheme. Our theoretical results include: estimate of the error order between the discrete problem and the continuous direct problem; the convergence rate of the discrete regularized solution to the target source term; and the convergence of the regularized solution with respect to the noise level. Then we propose an accelerated primal-dual iterative algorithm based on an equivalent saddle-point reformulation of the discrete regularized model. Finally, a series of numerical tests are carried out to demonstrate the efficiency and accuracy of the algorithm.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.