Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Adapting by Pruning: A Case Study on BERT (2105.03343v1)

Published 7 May 2021 in cs.LG and cs.CL

Abstract: Adapting pre-trained neural models to downstream tasks has become the standard practice for obtaining high-quality models. In this work, we propose a novel model adaptation paradigm, adapting by pruning, which prunes neural connections in the pre-trained model to optimise the performance on the target task; all remaining connections have their weights intact. We formulate adapting-by-pruning as an optimisation problem with a differentiable loss and propose an efficient algorithm to prune the model. We prove that the algorithm is near-optimal under standard assumptions and apply the algorithm to adapt BERT to some GLUE tasks. Results suggest that our method can prune up to 50% weights in BERT while yielding similar performance compared to the fine-tuned full model. We also compare our method with other state-of-the-art pruning methods and study the topological differences of their obtained sub-networks.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.