Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting Vulnerabilities in Deep Neural Networks: Adversarial and Fault-Injection Attacks (2105.03251v1)

Published 5 May 2021 in cs.CR and cs.LG

Abstract: From tiny pacemaker chips to aircraft collision avoidance systems, the state-of-the-art Cyber-Physical Systems (CPS) have increasingly started to rely on Deep Neural Networks (DNNs). However, as concluded in various studies, DNNs are highly susceptible to security threats, including adversarial attacks. In this paper, we first discuss different vulnerabilities that can be exploited for generating security attacks for neural network-based systems. We then provide an overview of existing adversarial and fault-injection-based attacks on DNNs. We also present a brief analysis to highlight different challenges in the practical implementation of adversarial attacks. Finally, we also discuss various prospective ways to develop robust DNN-based systems that are resilient to adversarial and fault-injection attacks.

Citations (8)

Summary

We haven't generated a summary for this paper yet.