Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Data-driven scheduling in serverless computing to reduce response time (2105.03217v1)

Published 7 May 2021 in cs.DC

Abstract: In Function as a Service (FaaS), a serverless computing variant, customers deploy functions instead of complete virtual machines or Linux containers. It is the cloud provider who maintains the runtime environment for these functions. FaaS products are offered by all major cloud providers (e.g. Amazon Lambda, Google Cloud Functions, Azure Functions); as well as standalone open-source software (e.g. Apache OpenWhisk) with their commercial variants (e.g. Adobe I/O Runtime or IBM Cloud Functions). We take the bottom-up perspective of a single node in a FaaS cluster. We assume that all the execution environments for a set of functions assigned to this node have been already installed. Our goal is to schedule individual invocations of functions, passed by a load balancer, to minimize performance metrics related to response time. Deployed functions are usually executed repeatedly in response to multiple invocations made by end-users. Thus, our scheduling decisions are based on the information gathered locally: the recorded call frequencies and execution times. We propose a number of heuristics, and we also adapt some theoretically-grounded ones like SEPT or SERPT. Our simulations use a recently-published Azure Functions Trace. We show that, compared to the baseline FIFO or round-robin, our data-driven scheduling decisions significantly improve the performance.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube