Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 128 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Few-Shot Learning for Image Classification of Common Flora (2105.03056v1)

Published 7 May 2021 in cs.CV

Abstract: The use of meta-learning and transfer learning in the task of few-shot image classification is a well researched area with many papers showcasing the advantages of transfer learning over meta-learning in cases where data is plentiful and there is no major limitations to computational resources. In this paper we will showcase our experimental results from testing various state-of-the-art transfer learning weights and architectures versus similar state-of-the-art works in the meta-learning field for image classification utilizing Model-Agnostic Meta Learning (MAML). Our results show that both practices provide adequate performance when the dataset is sufficiently large, but that they both also struggle when data sparsity is introduced to maintain sufficient performance. This problem is moderately reduced with the use of image augmentation and the fine-tuning of hyperparameters. In this paper we will discuss: (1) our process of developing a robust multi-class convolutional neural network (CNN) for the task of few-shot image classification, (2) demonstrate that transfer learning is the superior method of helping create an image classification model when the dataset is large and (3) that MAML outperforms transfer learning in the case where data is very limited. The code is available here: github.com/JBall1/Few-Shot-Limited-Data

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.