Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Adaptive Domain-Specific Normalization for Generalizable Person Re-Identification (2105.03042v2)

Published 7 May 2021 in cs.CV

Abstract: Although existing person re-identification (Re-ID) methods have shown impressive accuracy, most of them usually suffer from poor generalization on unseen target domain. Thus, generalizable person Re-ID has recently drawn increasing attention, which trains a model on source domains that generalizes well on unseen target domain without model updating. In this work, we propose a novel adaptive domain-specific normalization approach (AdsNorm) for generalizable person Re-ID. It describes unseen target domain as a combination of the known source ones, and explicitly learns domain-specific representation with target distribution to improve the model's generalization by a meta-learning pipeline. Specifically, AdsNorm utilizes batch normalization layers to collect individual source domains' characteristics, and maps source domains into a shared latent space by using these characteristics, where the domain relevance is measured by a distance function of different domain-specific normalization statistics and features. At the testing stage, AdsNorm projects images from unseen target domain into the same latent space, and adaptively integrates the domain-specific features carrying the source distributions by domain relevance for learning more generalizable aggregated representation on unseen target domain. Considering that target domain is unavailable during training, a meta-learning algorithm combined with a customized relation loss is proposed to optimize an effective and efficient ensemble model. Extensive experiments demonstrate that AdsNorm outperforms the state-of-the-art methods. The code is available at: https://github.com/hzphzp/AdsNorm.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube