Approximate inversion of discrete Fourier integral operators (2105.02995v1)
Abstract: This paper introduces a factorization for the inverse of discrete Fourier integral operators that can be applied in quasi-linear time. The factorization starts by approximating the operator with the butterfly factorization. Next, a hierarchical matrix representation is constructed for the hermitian matrix arising from composing the Fourier integral operator with its adjoint. This representation is inverted efficiently with a new algorithm based on the hierarchical interpolative factorization. By combining these two factorizations, an approximate inverse factorization for the Fourier integral operator is obtained as a product of $O(\log N)$ sparse matrices of size $N\times N$. The resulting approximate inverse factorization can be used as a direct solver or as a preconditioner. Numerical examples on 1D and 2D Fourier integral operators, including a generalized Radon transform, demonstrate the performance of this new approach.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.