Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Approximate inversion of discrete Fourier integral operators (2105.02995v1)

Published 6 May 2021 in math.NA and cs.NA

Abstract: This paper introduces a factorization for the inverse of discrete Fourier integral operators that can be applied in quasi-linear time. The factorization starts by approximating the operator with the butterfly factorization. Next, a hierarchical matrix representation is constructed for the hermitian matrix arising from composing the Fourier integral operator with its adjoint. This representation is inverted efficiently with a new algorithm based on the hierarchical interpolative factorization. By combining these two factorizations, an approximate inverse factorization for the Fourier integral operator is obtained as a product of $O(\log N)$ sparse matrices of size $N\times N$. The resulting approximate inverse factorization can be used as a direct solver or as a preconditioner. Numerical examples on 1D and 2D Fourier integral operators, including a generalized Radon transform, demonstrate the performance of this new approach.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube