Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Nonlinear Full Information and Moving Horizon Estimation: Robust Global Asymptotic Stability (2105.02764v3)

Published 6 May 2021 in eess.SY, cs.SY, and math.OC

Abstract: In this paper, we propose time-discounted schemes for full information estimation (FIE) and moving horizon estimation (MHE) that are robustly globally asymptotically stable (RGAS). We consider general nonlinear system dynamics with nonlinear process and output disturbances that are a priori unknown. For FIE being RGAS, our only assumptions are that the system is time-discounted incrementally input-output-to-state-stable (i-IOSS) and that the time-discounted FIE cost function is compatible with the i-IOSS estimate. Since for i-IOSS systems such a compatible cost function can always be designed, we show that i-IOSS is sufficient for the existence of RGAS observers. Based on the stability result for FIE, we provide sufficient conditions such that the induced MHE scheme is RGAS as well for sufficiently large horizons. For both schemes, we can guarantee convergence of the estimation error in case the disturbances converge to zero without incorporating a priori knowledge. Finally, we present explicit converge rates and show how to verify that the MHE results approach the FIE results for increasing horizons.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.