Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Notes on Exact Boundary Values in Residual Minimisation (2105.02550v2)

Published 6 May 2021 in math.NA and cs.NA

Abstract: We analyse the difference in convergence mode using exact versus penalised boundary values for the residual minimisation of PDEs with neural network type ansatz functions, as is commonly done in the context of physics informed neural networks. It is known that using an $L2$ boundary penalty leads to a loss of regularity of $3/2$ meaning that approximation in $H2$ yields a priori estimates in $H{1/2}$. These notes demonstrate how this loss of regularity can be circumvented if the functions in the ansatz class satisfy the boundary values exactly. Furthermore, it is shown that in this case, the loss function provides a consistent a posteriori error estimator in $H2$ norm made by the residual minimisation method. We provide analogue results for linear time dependent problems and discuss the implications of measuring the residual in Sobolev norms.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.