Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

High-dimensional Functional Graphical Model Structure Learning via Neighborhood Selection Approach (2105.02487v3)

Published 6 May 2021 in stat.ML, cs.LG, and stat.ME

Abstract: Undirected graphical models are widely used to model the conditional independence structure of vector-valued data. However, in many modern applications, for example those involving EEG and fMRI data, observations are more appropriately modeled as multivariate random functions rather than vectors. Functional graphical models have been proposed to model the conditional independence structure of such functional data. We propose a neighborhood selection approach to estimate the structure of Gaussian functional graphical models, where we first estimate the neighborhood of each node via a function-on-function regression and subsequently recover the entire graph structure by combining the estimated neighborhoods. Our approach only requires assumptions on the conditional distributions of random functions, and we estimate the conditional independence structure directly. We thus circumvent the need for a well-defined precision operator that may not exist when the functions are infinite dimensional. Additionally, the neighborhood selection approach is computationally efficient and can be easily parallelized. The statistical consistency of the proposed method in the high-dimensional setting is supported by both theory and experimental results. In addition, we study the effect of the choice of the function basis used for dimensionality reduction in an intermediate step. We give a heuristic criterion for choosing a function basis and motivate two practically useful choices, which we justify by both theory and experiments.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.