Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

DBNet: A Dual-branch Network Architecture Processing on Spectrum and Waveform for Single-channel Speech Enhancement (2105.02436v1)

Published 6 May 2021 in cs.SD and eess.AS

Abstract: In real acoustic environment, speech enhancement is an arduous task to improve the quality and intelligibility of speech interfered by background noise and reverberation. Over the past years, deep learning has shown great potential on speech enhancement. In this paper, we propose a novel real-time framework called DBNet which is a dual-branch structure with alternate interconnection. Each branch incorporates an encoder-decoder architecture with skip connections. The two branches are responsible for spectrum and waveform modeling, respectively. A bridge layer is adopted to exchange information between the two branches. Systematic evaluation and comparison show that the proposed system substantially outperforms related algorithms under very challenging environments. And in INTERSPEECH 2021 Deep Noise Suppression (DNS) challenge, the proposed system ranks the top 8 in real-time track 1 in terms of the Mean Opinion Score (MOS) of the ITU-T P.835 framework.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.