Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Physics-informed Spline Learning for Nonlinear Dynamics Discovery (2105.02368v2)

Published 5 May 2021 in cs.LG, cs.AI, and nlin.CD

Abstract: Dynamical systems are typically governed by a set of linear/nonlinear differential equations. Distilling the analytical form of these equations from very limited data remains intractable in many disciplines such as physics, biology, climate science, engineering and social science. To address this fundamental challenge, we propose a novel Physics-informed Spline Learning (PiSL) framework to discover parsimonious governing equations for nonlinear dynamics, based on sparsely sampled noisy data. The key concept is to (1) leverage splines to interpolate locally the dynamics, perform analytical differentiation and build the library of candidate terms, (2) employ sparse representation of the governing equations, and (3) use the physics residual in turn to inform the spline learning. The synergy between splines and discovered underlying physics leads to the robust capacity of dealing with high-level data scarcity and noise. A hybrid sparsity-promoting alternating direction optimization strategy is developed for systematically pruning the sparse coefficients that form the structure and explicit expression of the governing equations. The efficacy and superiority of the proposed method have been demonstrated by multiple well-known nonlinear dynamical systems, in comparison with two state-of-the-art methods.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.