Emergent Mind

Universal Algorithms for Clustering Problems

(2105.02363)
Published May 5, 2021 in cs.DS

Abstract

This paper presents universal algorithms for clustering problems, including the widely studied $k$-median, $k$-means, and $k$-center objectives. The input is a metric space containing all potential client locations. The algorithm must select $k$ cluster centers such that they are a good solution for any subset of clients that actually realize. Specifically, we aim for low regret, defined as the maximum over all subsets of the difference between the cost of the algorithm's solution and that of an optimal solution. A universal algorithm's solution $SOL$ for a clustering problem is said to be an $(\alpha, \beta)$-approximation if for all subsets of clients $C'$, it satisfies $SOL(C') \leq \alpha \cdot OPT(C') + \beta \cdot MR$, where $OPT(C')$ is the cost of the optimal solution for clients $C'$ and $MR$ is the minimum regret achievable by any solution. Our main results are universal algorithms for the standard clustering objectives of $k$-median, $k$-means, and $k$-center that achieve $(O(1), O(1))$-approximations. These results are obtained via a novel framework for universal algorithms using linear programming (LP) relaxations. These results generalize to other $\ell_p$-objectives and the setting where some subset of the clients are fixed. We also give hardness results showing that $(\alpha, \beta)$-approximation is NP-hard if $\alpha$ or $\beta$ is at most a certain constant, even for the widely studied special case of Euclidean metric spaces. This shows that in some sense, $(O(1), O(1))$-approximation is the strongest type of guarantee obtainable for universal clustering.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.