Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Attention for Image Registration (AiR): an unsupervised Transformer approach (2105.02282v2)

Published 5 May 2021 in cs.CV and cs.AI

Abstract: Image registration is a crucial task in signal processing, but it often encounters issues with stability and efficiency. Non-learning registration approaches rely on optimizing similarity metrics between fixed and moving images, which can be expensive in terms of time and space complexity. This problem can be exacerbated when the images are large or there are significant deformations between them. Recently, deep learning, specifically convolutional neural network (CNN)-based methods, have been explored as an effective solution to the weaknesses of non-learning approaches. To further advance learning approaches in image registration, we introduce an attention mechanism in the deformable image registration problem. Our proposed approach is based on a Transformer framework called AiR, which can be efficiently trained on GPGPU devices. We treat the image registration problem as a language translation task and use the Transformer to learn the deformation field. The method learns an unsupervised generated deformation map and is tested on two benchmark datasets. In summary, our approach shows promising effectiveness in addressing stability and efficiency issues in image registration tasks. The source code of AiR is available on Github.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.