Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Cylindrical Battery Fault Detection under Extreme Fast Charging: A Physics-based Learning Approach (2105.02169v2)

Published 5 May 2021 in eess.SY and cs.SY

Abstract: High power operation in extreme fast charging significantly increases the risk of internal faults in Electric Vehicle batteries which can lead to accelerated battery failure. Early detection of these faults is crucial for battery safety and widespread deployment of fast charging. In this setting, we propose a real-time {detection} framework for battery voltage and thermal faults. A major challenge in battery fault detection arises from the effect of uncertainties originating from sensor inaccuracies, nominal aging, or unmodelled dynamics. Inspired by physics-based learning, we explore a detection paradigm that combines physics-based models, model-based detection observers, and data-driven learning techniques to address this challenge. Specifically, we construct the {detection} observers based on an experimentally identified electrochemical-thermal model, and subsequently design the observer tuning parameters following Lyapunov's stability theory. Furthermore, we utilize Gaussian Process Regression technique to learn the model and measurement uncertainties which in turn aid the {detection} observers in distinguishing faults and uncertainties. Such uncertainty learning essentially helps suppressing their effects, potentially enabling early detection of faults. We perform simulation and experimental case studies on the proposed fault {detection} scheme verifying the potential of physics-based learning in early detection of battery faults.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.