Papers
Topics
Authors
Recent
2000 character limit reached

Perceptual Gradient Networks (2105.01957v1)

Published 5 May 2021 in cs.LG and cs.CV

Abstract: Many applications of deep learning for image generation use perceptual losses for either training or fine-tuning of the generator networks. The use of perceptual loss however incurs repeated forward-backward passes in a large image classification network as well as a considerable memory overhead required to store the activations of this network. It is therefore desirable or sometimes even critical to get rid of these overheads. In this work, we propose a way to train generator networks using approximations of perceptual loss that are computed without forward-backward passes. Instead, we use a simpler perceptual gradient network that directly synthesizes the gradient field of a perceptual loss. We introduce the concept of proxy targets, which stabilize the predicted gradient, meaning that learning with it does not lead to divergence or oscillations. In addition, our method allows interpretation of the predicted gradient, providing insight into the internals of perceptual loss and suggesting potential ways to improve it in future work.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.