Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Formally Justifying MDL-based Inference of Cause and Effect (2105.01902v1)

Published 5 May 2021 in cs.IT and math.IT

Abstract: The algorithmic independence of conditionals, which postulates that the causal mechanism is algorithmically independent of the cause, has recently inspired many highly successful approaches to distinguish cause from effect given only observational data. Most popular among these is the idea to approximate algorithmic independence via two-part Minimum Description Length (MDL). Although intuitively sensible, the link between the original postulate and practical two-part MDL encodings is left vague. In this work, we close this gap by deriving a two-part formulation of this postulate, in terms of Kolmogorov complexity, which directly links to practical MDL encodings. To close the cycle, we prove that this formulation leads on expectation to the same inference result as the original postulate.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.