Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

TransHash: Transformer-based Hamming Hashing for Efficient Image Retrieval (2105.01823v1)

Published 5 May 2021 in cs.CV

Abstract: Deep hamming hashing has gained growing popularity in approximate nearest neighbour search for large-scale image retrieval. Until now, the deep hashing for the image retrieval community has been dominated by convolutional neural network architectures, e.g. \texttt{Resnet}\cite{he2016deep}. In this paper, inspired by the recent advancements of vision transformers, we present \textbf{Transhash}, a pure transformer-based framework for deep hashing learning. Concretely, our framework is composed of two major modules: (1) Based on \textit{Vision Transformer} (ViT), we design a siamese vision transformer backbone for image feature extraction. To learn fine-grained features, we innovate a dual-stream feature learning on top of the transformer to learn discriminative global and local features. (2) Besides, we adopt a Bayesian learning scheme with a dynamically constructed similarity matrix to learn compact binary hash codes. The entire framework is jointly trained in an end-to-end manner.~To the best of our knowledge, this is the first work to tackle deep hashing learning problems without convolutional neural networks (\textit{CNNs}). We perform comprehensive experiments on three widely-studied datasets: \textbf{CIFAR-10}, \textbf{NUSWIDE} and \textbf{IMAGENET}. The experiments have evidenced our superiority against the existing state-of-the-art deep hashing methods. Specifically, we achieve 8.2\%, 2.6\%, 12.7\% performance gains in terms of average \textit{mAP} for different hash bit lengths on three public datasets, respectively.

Citations (41)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.