Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Broadly Applicable Targeted Data Sample Omission Attacks (2105.01560v2)

Published 4 May 2021 in cs.LG

Abstract: We introduce a novel clean-label targeted poisoning attack on learning mechanisms. While classical poisoning attacks typically corrupt data via addition, modification and omission, our attack focuses on data omission only. Our attack misclassifies a single, targeted test sample of choice, without manipulating that sample. We demonstrate the effectiveness of omission attacks against a large variety of learners including deep neural networks, SVM and decision trees, using several datasets including MNIST, IMDB and CIFAR. The focus of our attack on data omission only is beneficial as well, as it is simpler to implement and analyze. We show that, with a low attack budget, our attack's success rate is above 80%, and in some cases 100%, for white-box learning. It is systematically above the reference benchmark for black-box learning. For both white-box and black-box cases, changes in model accuracy are negligible, regardless of the specific learner and dataset. We also prove theoretically in a simplified agnostic PAC learning framework that, subject to dataset size and distribution, our omission attack succeeds with high probability against any successful simplified agnostic PAC learner.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.