Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Review of Confidentiality Threats Against Embedded Neural Network Models (2105.01401v1)

Published 4 May 2021 in cs.CR and cs.AI

Abstract: Utilization of Machine Learning (ML) algorithms, especially Deep Neural Network (DNN) models, becomes a widely accepted standard in many domains more particularly IoT-based systems. DNN models reach impressive performances in several sensitive fields such as medical diagnosis, smart transport or security threat detection, and represent a valuable piece of Intellectual Property. Over the last few years, a major trend is the large-scale deployment of models in a wide variety of devices. However, this migration to embedded systems is slowed down because of the broad spectrum of attacks threatening the integrity, confidentiality and availability of embedded models. In this review, we cover the landscape of attacks targeting the confidentiality of embedded DNN models that may have a major impact on critical IoT systems, with a particular focus on model extraction and data leakage. We highlight the fact that Side-Channel Analysis (SCA) is a relatively unexplored bias by which model's confidentiality can be compromised. Input data, architecture or parameters of a model can be extracted from power or electromagnetic observations, testifying a real need from a security point of view.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.