Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deterministic matrix sketches for low-rank compression of high-dimensional simulation data (2105.01271v1)

Published 4 May 2021 in math.NA and cs.NA

Abstract: Matrices arising in scientific applications frequently admit linear low-rank approximations due to smoothness in the physical and/or temporal domain of the problem. In large-scale problems, computing an optimal low-rank approximation can be prohibitively expensive. Matrix sketching addresses this by reducing the input matrix to a smaller, but representative matrix via a low-dimensional linear embedding. If the sketch matrix produced by the embedding captures sufficient geometric properties of the original matrix, then a near-optimal approximation may be obtained. Much of the work done in matrix sketching has centered on random projection. Alternatively, in this work, deterministic matrix sketches which generate coarse representations, compatible with the corresponding PDE solve, are considered in the computation of the singular value decomposition and matrix interpolative decomposition. The deterministic sketching approaches in this work have many advantages over randomized sketches. Broadly, randomized sketches are data-agnostic, whereas the proposed sketching methods exploit structures within data generated in complex PDE systems. These deterministic sketches are often faster, require access to a small fraction of the input matrix, and do not need to be explicitly constructed. A novel single-pass, i.e., requiring one read over the input, power iteration algorithm is also presented. The power iteration method is particularly effective in improving low-rank approximations when the singular value decay of data is slow. Finally, theoretical error bounds and estimates, as well as numerical results across three application problems, are provided.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.