Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Tuple Interpretations for Higher-Order Rewriting (2105.01112v1)

Published 3 May 2021 in cs.SC and cs.LO

Abstract: We develop a class of algebraic interpretations for many-sorted and higher-order term rewriting systems that takes type information into account. Specifically, base-type terms are mapped to \emph{tuples} of natural numbers and higher-order terms to functions between those tuples. Tuples may carry information relevant to the type; for instance, a term of type $\mathsf{nat}$ may be associated to a pair $(\mathsf{cost}, \mathsf{size})$ representing its evaluation cost and size. This class of interpretations results in a more fine-grained notion of complexity than runtime or derivational complexity, which makes it particularly useful to obtain complexity bounds for higher-order rewriting systems. We show that rewriting systems compatible with tuple interpretations admit finite bounds on derivation height. Furthermore, we demonstrate how to mechanically construct tuple interpretations and how to orient $\beta$ and $\eta$ reductions within our technique. Finally, we relate our method to runtime complexity and prove that specific interpretation shapes imply certain runtime complexity bounds.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)