Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Playing Stochastically in Weighted Timed Games to Emulate Memory (2105.00984v7)

Published 3 May 2021 in cs.GT

Abstract: Weighted timed games are two-player zero-sum games played in a timed automaton equipped with integer weights. We consider optimal reachability objectives, in which one of the players, that we call Min, wants to reach a target location while minimising the cumulated weight. While knowing if Min has a strategy to guarantee a value lower than a given threshold is known to be undecidable (with two or more clocks), several conditions, one of them being divergence, have been given to recover decidability. In such weighted timed games (like in untimed weighted games in the presence of negative weights), Min may need finite memory to play (close to) optimally. This is thus tempting to try to emulate this finite memory with other strategic capabilities. In this work, we allow the players to use stochastic decisions, both in the choice of transitions and of timing delays. We give a definition of the expected value in weighted timed games. We then show that, in divergent weighted timed games as well as in (untimed) weighted games (that we call shortest-path games in the following), the stochastic value is indeed equal to the classical (deterministic) value, thus proving that Min can guarantee the same value while only using stochastic choices, and no memory.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube