Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

AMMU : A Survey of Transformer-based Biomedical Pretrained Language Models (2105.00827v2)

Published 16 Apr 2021 in cs.CL, cs.AI, and cs.LG

Abstract: Transformer-based pretrained LLMs (PLMs) have started a new era in modern NLP. These models combine the power of transformers, transfer learning, and self-supervised learning (SSL). Following the success of these models in the general domain, the biomedical research community has developed various in-domain PLMs starting from BioBERT to the latest BioELECTRA and BioALBERT models. We strongly believe there is a need for a survey paper that can provide a comprehensive survey of various transformer-based biomedical pretrained LLMs (BPLMs). In this survey, we start with a brief overview of foundational concepts like self-supervised learning, embedding layer and transformer encoder layers. We discuss core concepts of transformer-based PLMs like pretraining methods, pretraining tasks, fine-tuning methods, and various embedding types specific to biomedical domain. We introduce a taxonomy for transformer-based BPLMs and then discuss all the models. We discuss various challenges and present possible solutions. We conclude by highlighting some of the open issues which will drive the research community to further improve transformer-based BPLMs.

Citations (137)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.