Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Measuring diachronic sense change: new models and Monte Carlo methods for Bayesian inference (2105.00819v2)

Published 14 Apr 2021 in cs.CL and stat.ME

Abstract: In a bag-of-words model, the senses of a word with multiple meanings, e.g. "bank" (used either in a river-bank or an institution sense), are represented as probability distributions over context words, and sense prevalence is represented as a probability distribution over senses. Both of these may change with time. Modelling and measuring this kind of sense change is challenging due to the typically high-dimensional parameter space and sparse datasets. A recently published corpus of ancient Greek texts contains expert-annotated sense labels for selected target words. Automatic sense-annotation for the word "kosmos" (meaning decoration, order or world) has been used as a test case in recent work with related generative models and Monte Carlo methods. We adapt an existing generative sense change model to develop a simpler model for the main effects of sense and time, and give MCMC methods for Bayesian inference on all these models that are more efficient than existing methods. We carry out automatic sense-annotation of snippets containing "kosmos" using our model, and measure the time-evolution of its three senses and their prevalence. As far as we are aware, ours is the first analysis of this data, within the class of generative models we consider, that quantifies uncertainty and returns credible sets for evolving sense prevalence in good agreement with those given by expert annotation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube