Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Measuring diachronic sense change: new models and Monte Carlo methods for Bayesian inference (2105.00819v2)

Published 14 Apr 2021 in cs.CL and stat.ME

Abstract: In a bag-of-words model, the senses of a word with multiple meanings, e.g. "bank" (used either in a river-bank or an institution sense), are represented as probability distributions over context words, and sense prevalence is represented as a probability distribution over senses. Both of these may change with time. Modelling and measuring this kind of sense change is challenging due to the typically high-dimensional parameter space and sparse datasets. A recently published corpus of ancient Greek texts contains expert-annotated sense labels for selected target words. Automatic sense-annotation for the word "kosmos" (meaning decoration, order or world) has been used as a test case in recent work with related generative models and Monte Carlo methods. We adapt an existing generative sense change model to develop a simpler model for the main effects of sense and time, and give MCMC methods for Bayesian inference on all these models that are more efficient than existing methods. We carry out automatic sense-annotation of snippets containing "kosmos" using our model, and measure the time-evolution of its three senses and their prevalence. As far as we are aware, ours is the first analysis of this data, within the class of generative models we consider, that quantifies uncertainty and returns credible sets for evolving sense prevalence in good agreement with those given by expert annotation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Schyan Zafar (3 papers)
  2. Geoff Nicholls (2 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.