Papers
Topics
Authors
Recent
2000 character limit reached

Weakly supervised deep learning-based intracranial hemorrhage localization (2105.00781v1)

Published 3 May 2021 in cs.CV and physics.med-ph

Abstract: Intracranial hemorrhage is a life-threatening disease, which requires fast medical intervention. Owing to the duration of data annotation, head CT images are usually available only with slice-level labeling. This paper presents a weakly supervised method of precise hemorrhage localization in axial slices using only position-free labels, which is based on multiple instance learning. An algorithm is introduced that generates hemorrhage likelihood maps and finds the coordinates of bleeding. The Dice coefficient of 58.08 % is achieved on data from a publicly available dataset.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.