Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

APEX: A High-Performance Learned Index on Persistent Memory (2105.00683v3)

Published 3 May 2021 in cs.DB

Abstract: The recently released persistent memory (PM) offers high performance, persistence, and is cheaper than DRAM. This opens up new possibilities for indexes that operate and persist data directly on the memory bus. Recent learned indexes exploit data distribution and have shown great potential for some workloads. However, none support persistence or instant recovery, and existing PM-based indexes typically evolve B+-trees without considering learned indexes. This paper proposes APEX, a new PM-optimized learned index that offers high performance, persistence, concurrency, and instant recovery. APEX is based on ALEX, a state-of-the-art updatable learned index, to combine and adapt the best of past PM optimizations and learned indexes, allowing it to reduce PM accesses while still exploiting machine learning. Our evaluation on Intel DCPMM shows that APEX can perform up to ~15x better than existing PM indexes and can recover from failures in ~42ms.

Citations (44)

Summary

We haven't generated a summary for this paper yet.