Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Quantum Advantage with Shallow Circuits Under Arbitrary Corruption (2105.00603v3)

Published 3 May 2021 in quant-ph and cs.CC

Abstract: Recent works by Bravyi, Gosset and K\"onig (Science 2018), Bene Watts et al. (STOC 2019), Coudron, Stark and Vidick (QIP 2019) and Le Gall (CCC 2019) have shown unconditional separations between the computational powers of shallow (i.e., small-depth) quantum and classical circuits: quantum circuits can solve in constant depth computational problems that require logarithmic depth to solve with classical circuits. Using quantum error correction, Bravyi, Gosset, K\"onig and Tomamichel (Nature Physics 2020) further proved that a similar separation still persists even if quantum circuits are subject to local stochastic noise. In this paper, we consider the case where any constant fraction of the qubits (for instance, huge blocks of qubits) may be arbitrarily corrupted at the end of the computation. We make a first step forward towards establishing a quantum advantage even in this extremely challenging setting: we show that there exists a computational problem that can be solved in constant depth by a quantum circuit but such that even solving any large subproblem of this problem requires logarithmic depth with bounded fan-in classical circuits. This gives another compelling evidence of the computational power of quantum shallow circuits. In order to show our result, we consider the Graph State Sampling problem (which was also used in prior works) on expander graphs. We exploit the "robustness" of expander graphs against vertex corruption to show that a subproblem hard for small-depth classical circuits can still be extracted from the output of the corrupted quantum circuit.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.