Papers
Topics
Authors
Recent
2000 character limit reached

Maximum Principle Preserving Finite Difference Scheme for 1-D Nonlocal-to-Local Diffusion Problems (2105.00601v1)

Published 3 May 2021 in math.NA and cs.NA

Abstract: In a paper (see [7]), a quasi-nonlocal coupling method was introduced to seamlessly bridge a nonlocal diffusion model with the classical local diffusion counterpart in a one-dimensional space. The proposed coupling framework removes inconsistency on the interface, preserves the balance of fluxes, and satisfies the maximum principle of diffusion problem. However, the numerical scheme proposed in that paper does not maintain all of these properties on a discrete level. In this paper we resolve these issues by proposing a new finite difference scheme that ensures the balance of fluxes and the discrete maximum principle. We rigorously prove these results and provide the stability and convergence analyses accordingly. In addition, we provide the Courant-Friedrichs-Lewy (CFL) condition for the new scheme and test a series of benchmark examples which confirm the theoretical findings.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.