Explicit constructions of optimal linear codes with Hermitian hulls and their application to quantum codes (2105.00513v2)
Abstract: We prove that any Hermitian self-orthogonal $[n,k,d]{q2}$ code gives rise to an $[n,k,d]{q2}$ code with $\ell$ dimensional Hermitian hull for $0\le \ell \le k$. We present a new method to construct Hermitian self-orthogonal $[n,k]{q2}$ codes with large dimensions $k>\frac{n+q-1}{q+1}$. New families of Hermitian self-orthogonal codes with good parameters are obtained; more precisely those containing almost MDS codes. By applying a puncturing technique to Hermitian self-orthogonal codes, MDS $[n,k]{q2}$ linear codes with Hermitian hull having large dimensions $k>\frac{n+q-1}{q+1}$ are also derived. New families of MDS, almost MDS and optimal codes with arbitrary Hermitian hull dimensions are explicitly constructed from algebraic curves. As an application, we provide entanglement-assisted quantum error correcting codes with new parameters.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.