Papers
Topics
Authors
Recent
2000 character limit reached

A survey on VQA_Datasets and Approaches (2105.00421v1)

Published 2 May 2021 in cs.CV, cs.AI, and cs.LG

Abstract: Visual question answering (VQA) is a task that combines both the techniques of computer vision and natural language processing. It requires models to answer a text-based question according to the information contained in a visual. In recent years, the research field of VQA has been expanded. Research that focuses on the VQA, examining the reasoning ability and VQA on scientific diagrams, has also been explored more. Meanwhile, more multimodal feature fusion mechanisms have been proposed. This paper will review and analyze existing datasets, metrics, and models proposed for the VQA task.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.