2000 character limit reached
A survey on VQA_Datasets and Approaches (2105.00421v1)
Published 2 May 2021 in cs.CV, cs.AI, and cs.LG
Abstract: Visual question answering (VQA) is a task that combines both the techniques of computer vision and natural language processing. It requires models to answer a text-based question according to the information contained in a visual. In recent years, the research field of VQA has been expanded. Research that focuses on the VQA, examining the reasoning ability and VQA on scientific diagrams, has also been explored more. Meanwhile, more multimodal feature fusion mechanisms have been proposed. This paper will review and analyze existing datasets, metrics, and models proposed for the VQA task.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.