Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AG-CUResNeSt: A Novel Method for Colon Polyp Segmentation (2105.00402v3)

Published 2 May 2021 in eess.IV and cs.CV

Abstract: Colorectal cancer is among the most common malignancies and can develop from high-risk colon polyps. Colonoscopy is an effective screening tool to detect and remove polyps, especially in the case of precancerous lesions. However, the missing rate in clinical practice is relatively high due to many factors. The procedure could benefit greatly from using AI models for automatic polyp segmentation, which provide valuable insights for improving colon polyp detection. However, precise segmentation is still challenging due to variations of polyps in size, shape, texture, and color. This paper proposes a novel neural network architecture called AG-CUResNeSt, which enhances Coupled UNets using the robust ResNeSt backbone and attention gates. The network is capable of effectively combining multi-level features to yield accurate polyp segmentation. Experimental results on five popular benchmark datasets show that our proposed method achieves state-of-the-art accuracy compared to existing methods.

Citations (21)

Summary

We haven't generated a summary for this paper yet.