Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

When to Fold'em: How to answer Unanswerable questions (2105.00328v1)

Published 1 May 2021 in cs.CL

Abstract: We present 3 different question-answering models trained on the SQuAD2.0 dataset -- BIDAF, DocumentQA and ALBERT Retro-Reader -- demonstrating the improvement of LLMs in the past three years. Through our research in fine-tuning pre-trained models for question-answering, we developed a novel approach capable of achieving a 2% point improvement in SQuAD2.0 F1 in reduced training time. Our method of re-initializing select layers of a parameter-shared LLM is simple yet empirically powerful.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube