Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The complexity of approximating the complex-valued Ising model on bounded degree graphs (2105.00287v4)

Published 1 May 2021 in cs.CC and math.CO

Abstract: We study the complexity of approximating the partition function $Z_{\mathrm{Ising}}(G; \beta)$ of the Ising model in terms of the relation between the edge interaction $\beta$ and a parameter $\Delta$ which is an upper bound on the maximum degree of the input graph $G$. Following recent trends in both statistical physics and algorithmic research, we allow the edge interaction $\beta$ to be any complex number. Many recent partition function results focus on complex parameters, both because of physical relevance and because of the key role of the complex case in delineating the tractability/intractability phase transition of the approximation problem. In this work we establish both new tractability results and new intractability results. Our tractability results show that $Z_{\mathrm{Ising}}(-; \beta)$ has an FPTAS when $\lvert \beta - 1 \rvert / \lvert \beta + 1 \rvert < \tan(\pi / (4 \Delta - 4))$. The core of the proof is showing that there are no inputs~$G$ that make the partition function $0$ when $\beta$ is in this range. Our result significantly extends the known zero-free region of the Ising model (and hence the known approximation results). Our intractability results show that it is $\mathrm{#P}$-hard to multiplicatively approximate the norm and to additively approximate the argument of $Z_{\mathrm{Ising}}(-; \beta)$ when $\beta \in \mathbb{C}$ is an algebraic number such that $\beta \not \in \mathbb{R} \cup {i,-i}$ and $\lvert \beta - 1\rvert / \lvert \beta + 1 \rvert > 1 / \sqrt{\Delta - 1}$. These are the first results to show intractability of approximating $Z_{\mathrm{Ising}}(-, \beta)$ on bounded degree graphs with complex $\beta$. Moreover, we demonstrate situations in which zeros of the partition function imply hardness of approximation in the Ising model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Andreas Galanis (41 papers)
  2. Leslie Ann Goldberg (81 papers)
  3. Andrés Herrera-Poyatos (15 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.