Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Lite-FPN for Keypoint-based Monocular 3D Object Detection (2105.00268v2)

Published 1 May 2021 in cs.CV

Abstract: 3D object detection with a single image is an essential and challenging task for autonomous driving. Recently, keypoint-based monocular 3D object detection has made tremendous progress and achieved great speed-accuracy trade-off. However, there still exists a huge gap with LIDAR-based methods in terms of accuracy. To improve their performance without sacrificing efficiency, we propose a sort of lightweight feature pyramid network called Lite-FPN to achieve multi-scale feature fusion in an effective and efficient way, which can boost the multi-scale detection capability of keypoint-based detectors. Besides, the misalignment between classification score and localization precision is further relieved by introducing a novel regression loss named attention loss. With the proposed loss, predictions with high confidence but poor localization are treated with more attention during the training phase. Comparative experiments based on several state-of-the-art keypoint-based detectors on the KITTI dataset show that our proposed methods manage to achieve significant improvements in both accuracy and frame rate. The code and pretrained models will be released at \url{https://github.com/yanglei18/Lite-FPN}.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.